
Chemical Engineering Journal 84 (2001) 309–314

Reconciliation of censored measurements in
chemical processes: an alternative approach

V.G. Dov̀ı∗, C. Solisio
DICheP, “G.B. Bonino” Genoa University, Via Opera Pia 15, Genova 16145, Italy

Received 28 April 1998; accepted 13 November 2000

Abstract

The importance of considering the censoring of measured data in the reconciliation of process flow rates has been shown in a previous
paper [Chem. Eng. Sci. 52 (17) (1997) 3047]. The purpose of the present paper is to introduce a new technique for carrying out the actual
reconciliation procedure and compare its significance and performance with those of previous methods. A numerical example shows how
nontrivial differences are to be expected. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The measurement of concentrations and flowrates close
to, or even below, the detection limits of many industrial
on-line samplers is becoming more and more frequent. This
is due to more and more stringent constraints on the emis-
sion of pollutants in industrial effluents and to the require-
ment of high purity products, which results in both toxic
substances and impurities being measured at extremely low
concentrations.

Traditional techniques, such as those developed by
Vaclavek [2], Vaclavek and Loucka [3], Mah et al. [4], Ro-
magnoli and Stephanopoulos [5], Crowe et al. [6], Crowe
[7] and recently by Sanchez and Romagnoli [8] are not suit-
able for the reconciliation of process measurements when
some data may be below the detection limits, because they
do not consider the presence of constraints.

On the other hand, the introduction of positivity bounds on
the rectified data, as proposed by Narasimhan and Harikumar
[9], would overlook the functional form of the distribution
function of the measurements close to the detection limits.

Similarly the maximum entropy approach recently pro-
posed by Crowe [10] would neglect the statistical informa-
tion available.

Measurements subject to detection limits are said to be
censored. The following error distribution function has been
previously proposed for them [1]:
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p(ε) = p(ξ ′ − ξ̂ )

=




if ξ ′ = 0

{
1/Tξ 0 ≤ ε ≤ Tξ

0 ε ≥ Tξ

if ξ ′ ≥ Tξ N(0, σ 2
ξ )

(1)

where ξ ′ is the experimental observation,ξ̂ the unknown
exact value,Tξ the detection limit andσ 2

ξ the variance of
the error distribution when the measurement is aboveTξ . In
other words, a uniform distribution between zero andTξ was
assumed if a zero concentration value had been observed
and a normal distribution otherwise.

In this paper we propose an alternative distribution func-
tion based on a slightly modified assumption, i.e.

p(ε) = p(ξ ′ − ξ̂ )

=




1√
2πσξ Tξ

∫ Tξ

0
e
(η−ξ̂ )2/2σ2

ξ dη if ξ ′ = 0

N(0, σ 2
ξ
) if ξ ′ ≥ Tξ

(2)

Apparently, the error distribution function assumed in (2)
is physically more correct than that in (1), because it is
the measurementξ ′ that is subject to censoredness, not the
unknown true valuêξ , which is not necessarily below the
thresholdTξ if ξ ′ = 0, as implied by the error distribution
function (1).

On the other hand, assuming a Gaussian distribution for
the experimental error between the censored measurement
and the unknown exact value (and integrating over all the
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Nomenclature

A incidence matrix
C concentrations (Kmol/m3)
p probability distribution
Q flowrates (m3/s)
T detection limit (Kmol/m3)
u unmeasured variable
Y transpose of the matrix that spans the

null space matrixA3
x measured variable

Greek symbols
α elements of the incidence matrix
ε experimental error
η dummy variable
ξ censored variables
σ standard deviation

Superscripts
′ experimental value
∧ exact value
+ pseudoinverse operator
∧∗ estimated value

possible values of the censored measurement) requires a
homoscedastic (i.e. constant variance) distribution even for
values ofξ ′ (were they detectable) very close to zero. If
the latter assumption is not reasonable, then the distribution
(1) should be preferred in spite of the drawbacks discussed
above.

The aim of this article is to compare the procedures and
the results obtained using the distribution (2) rather than
distribution (1) or neglecting data censoredness altogether.
From case to case the reconciliation problem will have to be
solved using the most convenient assumption. To keep the
notation simple, we shall consider, as in the previous article,
only the basic case of linear constraints. Linear constraints
are based on the assumption that total flow rates are mea-
sured in any stream in which the concentration of the com-
ponent subject to detection limits is measured. The product
of the total flow rate and the concentration is then used as
the measurement to be adjusted.

In fact, if two random variables are distributed normally,
their product is also approximately Gaussian. First we shall
demonstrate this in a simple case, following the proof pro-
vided by Madron et al. [11]. To this purpose consider the
stochastic variablex = Q · c, whereQ andc are measure-
ments subject to errors, whose probability distributions are
normal. The unknown exact values are given byx̂ = Q̂ · ĉ,
where

x̂ = x + εx, Q̂ = Q + εV , ĉ = c + εc

It follows that

x + εx = (Q + εV ) · (c + εc)

and consequently

εx = cεV + Qεc + εcεV

If cεV + Qεc � εcεV , thenεx is a linear combination of
independent random variables with normal distributions and
consequently it also has a Gaussian distribution.

To determine the variance–covariance matrix in the gen-
eral case,

xk = gk(t)

wherexk is an arbitrary function of the measured variablest,
we can use the approximate relation suggested by Box [12]:

εx,k =
∑ ∂gk

∂tj
εt,j

and consequentlyVx = B Vt BT, where B is the matrix
whose elementbkj is given bybkj = ∂bk/∂tj .

For clarity we have not taken chemical reactions into con-
sideration, so that the reconciliation of measured flow rates
can be carried out separately for each component. However,
this does not impair the generality of the method. In fact,
if present, stoichiometric variables can be eliminated using
the matrix projection technique used in the next paragraph
to eliminate unmeasured variables, as described in [6]. Sim-
ilarly, the presence of nonlinear constraints can be dealt with
using the method developed by Dovı̀ and Del Borghi [13].

In particular, we shall focus in the sequel on a single com-
ponent subject to detection limits. Again, no loss of gener-
ality is implied by this choice. In fact, if all the components
in a stream are to be balanced, the adjusted total flow rate
can be made to equal the sum of the adjusted component
flow rates using the procedure described by Crowe et al. [6].

2. Problem statement

Following the notation used in [1], let us describe the
process structure by an incidence matrixA whose rows cor-
respond to units (or nodes) and columns to streams. The
elements ofA are defined as follows:

αkj =




1 if streamj is an input to unitk

−1 if streamj is an output from unitk

0 otherwise

Since we have limited our analysis to one nonreacting com-
ponent, the material balance for the plant can be written as

Ay = 0 (3)

wherey is the vector of the flow rates of the component
considered.

The vectory is partitioned into the subsetsx, ξ and u,
{y} = {x|ξ |u}, wherex are measured streams with values
above the detection limit,ξ the censored stream data andu
the unmeasured streams.
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Let us rewrite Eq. (1) as

A1x + A2ξ + A3u = 0

If the set {x} is assumed uncorrelated to the set{ξ}, the
maximum likelihood assumption gives rise to the following
problem:

Φ1(x̂, ξ̂ ) = max
⌊

e−(x′−x̂)TV −1
x (x′−x̂) · p(ξ)

⌋
s.t. A1x̂ + A2ξ̂ + A3û = 0, ξ̂ ≤ τ ξ (4)

wherep(ξ̂ ) is the distribution in the variableŝξ given by
Eq. (2).

Thus, we can rewrite Eq. (4) as

Φ1(x̂, ξ̂ )

= max


e−(x′−x̂)TV −1

x (x′−x̂) ·
∏
j

∫ τξj

0
e
−((η−ξ̂j )2/2σ2

ξ
)
dη




s.t. A1x̂ + A2ξ̂ + A3û = 0 (5)

Let us define nowYT as the matrix that spans the null space
of A3, i.e. Y T · A3 = 0.

We can rewrite problem (5) as

Φ1(x̂, ξ̂ )

= max


e−(x′−x̂)TV −1

x (x′−x̂) ·
∏
j

∫ τξj

0
e
−((η−ξ̂j )2/2σ2

ξ
)
dη




s.t. Y TA1x̂ + Y TA2ξ̂ = 0

This is the final formulation of our reconciliation problem.
To numerically solve this problem, we can transform it

into an unconstrained optimization problem by solving the
linear constraints for a suitable subset of the variables{x̂⊕ξ̂}
and substituting in the objective function. The unconstrained
objective function can then be maximized using a BFGS
quasi-Newton algorithm. If the presence of local stationary
points is to be taken into consideration (this could be the
case of complex process structures), the extremely efficient
mapped continuation algorithm proposed by Seader et al.
[14] to locate all extremum points of a function can be used.

Of course the vectorY TA2ξ does not necessarily include
all the ξ , becauseY T · A2 might include columns of zero
elements. Thejth column ofY T ·A2 is identically zero ifξj

enters the mass balance equation (3) in a linear combination
with components of the uvector. In this case the term∫ τξj

0
e
−((η−ξ̂j )2/2σ2

ξ
)
dη

can be dropped from the objective function and can be esti-
mated from

ϕ(ξj ) =
∫ τξj

0
e
−((η−ξ̂j )2/2σ2

ξ
)
dη = max

which provides the obvious solution

ξj = 1
2τξj

While the procedure described in [1] required a prelimi-
nary inspection of the number of linearly independent vari-
ables of the matrixYTA2 for the determination of the num-
ber of variableŝξk which could be estimated independently,
this is no longer the case for the method described in this
article.

In fact the variableŝξk are now present not only in the
constraints, but also in the objective function. This makes
it possible to estimate them regardless of the number of
linearly independent columns of the matrixYTA2.

From a mathematical point of view there are signifi-
cant differences in both objective function and constraints
between the method developed in this article and the one
described in [1]. In fact, while the objective function is no
longer a quadratic expression, this increased difficulty is
offset by the absence of inequality constraints, which are
replaced by equality constraints. The latter are generally
easier to deal with and, being linear, can be conveniently
eliminated with a simultaneous reduction of the indepen-
dent variables, as discussed above. Thus, even from an
algorithmic point of view, there is no clear-cut advantage
in using this procedure with respect to the one previously
described.

However, nontrivial differences can be detected in appli-
cations, as shown in the next section. Therefore we recom-
mend that both procedures be used and the results, if signif-
icant differences turn up, examined carefully.

3. A numerical example

A simple process, used to illustrate the previous method
and presently being implemented on a pilot plant scale, has
been considered for comparison.

A homogeneous catalyst is fed to a reactor whose output
undergoes two separation processes. The top product of
the first separation unit is recycled to the reactor, whereas
the bottom product is fed to the second separation unit.
The flowsheet of the process is represented in Fig. 1,
where all the streams have been labelled. Furthermore, the
variance–covariance matrix is assumed diagonal. In this
section the symbolxj indicates thejth stream, regardless
of whether it is measured with a normally distributed error,
censored or unmeasured.

Since we are considering only the reconciliation of mea-
surements of the catalyst flow rates, we can use the proce-
dure developed without chemical reactions. Again, if other
components were taken into consideration, the more general
projection technique described by Crowe et al. [6] can be
used.

Using the three constraints the optimization can be carried
out with respect tox1, x2, x6. Due to the particular structure
of the flowsheet, it is not necessary to actually carry out
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Fig. 1. Flowsheet considered.

the full optimization procedure. In fact bothx2 andx6 can
be calculated separately for every value ofx1, setting the
relevant derivatives to zero, i.e.

∂ ln Φ1

∂x2
= 0 ⇒ (x′

2 − x2)
2

σ 2
2

+ [x′
3 − (x1 + x2)]2

σ 2
3

= 0

∂ ln Φ1

∂x6
= 0 ⇒ ∂

∂x6

({
Erf

[
x6√
2σ6

]
+ Erf

[
τξ6 − x6√

2σ6

]}
·

×
{

Erf

[
x1 − x6√

2σ5

]
+ Erf

[
τξ6 − (x1 − x6)√

2σ5

]})
= 0

where primed symbols indicate the experimental values.
Thus, by lettingx1 vary over a suitable range, we can

locate the overall minimum without convergence difficulties.

Table 1
Experimental data

Stream No. Measured total flow rate (m3/s) Measured concentration (mol/m3) Component flow rate (mol/s) Detection limit Variance

1 11.00 0.001 0.110 – 0.0001
2 9.90 0.093 0.920 – 0.01
3 21.25 0.048 1.020 – 0.01
4 11.10 0.008 0.089 – 0.0005
5 7.00 0.001 0.070 – 0.0005
6 3.80 0 0 0.03 0.0001

Two different cases were considered. In both of them three
algorithms have been used for comparison:

1. the censoredness of data is neglected and only the posi-
tivity constraint is considered [9];

2. the censoredness of data is taken into account in the ex-
pression of the likelihood function according to the pro-
cedure described in [1];

3. the censoredness of data is taken into account in the
expression of the likelihood function according to the
method developed in this work.

3.1. First case

All streams are measured. Only stream No. 6 is below its
detection limit. The data are reported in Table 1, whereas
the results obtained using various assumptions are reported
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Table 2
Reconciled values using different techniques (one censored measurement)

Stream No. Rectified flow rates

Assumption 1 Assumption 2 Assumption 3

1 0.1020 0.1041 0.0964
2 0.9190 0.9180 0.9218
3 1.0210 1.0220 1.0182
4 0.1020 0.1041 0.0964
5 0.0967 0.0835 0.0589
6 0.0053 0.0206 0.0375

in Table 2. As can be seen, the reconstructed values ofx5
and x6 depend considerably on the reconciliation method
employed. In particular, assumption 1 gives rise to a gross
error on x5, whereas assumption 3 leads to values ofx6
above the detection limit, a possibility that was anticipated
in Section 1.

3.2. Second case

Same as case 1, except for the measurement of stream No.
5, which is now censored with a detection limit equal to 0.08,
the results are reported in Table 3. Unlike the results obtained
using the previous method, we are now able to estimate both
x5 and x6. However, the rectified value ofx6 corresponds
to the presence of a gross error (the reconstructed value is
twice the detection limit).

Fig. 2. Rectified flowrates using different techniques.

Table 3
Reconciled values using different techniques (two censored measurements)

Stream No. Rectified flow rates

Assumption 1 Assumption 2 Assumption 3

1 0.0935 0.1 0.1061
2 0.9232 0.9200 0.91695
3 1.0168 1.0200 1.02305
4 0.0935 0.1 0.1061
5 0.0779 0.1(x̂5 + x̂6)

a 0.0471
6 0.0156 – 0.0590

a The individual values of̂x5 andx̂6 could not be estimated separately.

Table 4
Sets of simulated data

Stream No. Reconciliation example (mol/s)

1◦ 2◦ n◦ 10◦ 11◦

1 0.1 0.1 0.1 0.1 0.1
2 0.9 0.9 0.9 0.9 0.9
3 1.0 1.0 1.0 1.0 1.0
4 0.1 0.1 0.1 0.1 0.1
5 0.07 0.073 – 0.097 0.099
6 0.03 0.027 – 0.003 0.001

4. Conclusions

We have described, as an alternative to a method de-
veloped in a previous paper, a new algorithm for the
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maximization of a generalized likelihood function in recon-
ciliation problems that include censored data.

Nontrivial differences in the rectified values obtained us-
ing the two methods have been detected. From case to case
the use of either method should be decided according to
the general characteristics of the structure of the experiment
(homo- or heteroscedasticity).

To show this influence we have carried out a test using a
sequence of rectifications based on simulated data. In par-
ticular, we have considered the same flowsheet as the one
in Fig. 1. The theoretical partial flowrates were kept con-
stant for the streams 1–4, whereas stream 6 ranged between
10−4 and 3× 10−2. The range of stream 5 followed from
the mass balances around unit 3. The corresponding values
are reported in Table 4.

Gaussian random errors with the variances reported in
Table 1 were added to the data concerning flow rates 1–4
and to flow rate 5. A heteroscedastic error with a variance
equal to 10−6 + 10−1ξ2 was added to Stream 6, whereξ is
the actual value of the stream.

Ten cases with different random errors were considered
for each set of theoretical values. The data were rectified
using the same different assumptions 1–3 stated before, with
the only difference that the measurement of stream 5 was
considered detectable if assumption 1 was used.

The rectified values of stream 6 in the three cases are
reported in Fig. 2. For every theoretical value of stream
6, the reconstructed values are the average values obtained
in the 10 cases generated using different random errors as
explained above.

Regarding the values rectified using procedure 1 (i.e. dis-
regarding the detection limit) as the most reliable ones, it
is evident that a better match is obtained using the model
developed in this work as the value ofξ moves towards the
detection limit (10−3) and consequently the true variance
(equal to 10−4 + 10−1 × 9 × 10−4) becomes≈10−4, equal
to the constant value used in the reconstruction method pro-
posed in this work.

This is the expected confirmation that in case the measure-
ment errors (were they detectable) have a heteroscedastic

structure, the reconciliation method developed in [1] has
to be preferred unless a detailed knowledge of the het-
eroscedasticity coefficients are available. Generally, this is
hardly ever the case in real industrial practice.
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